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ABSTRACT

Recent advances in neural modeling have produced deep multilingual language
models capable of extracting cross-lingual knowledge from non-parallel texts and
enabling zero-shot downstream transfer. While their success is often attributed
to shared representations, quantitative analyses are limited. Towards a better un-
derstanding, through empirical analyses, we show that the invariance of feature
representations across languages—an effect of shared representations—strongly
correlates with transfer performance. We also observe that distributional shifts in
class priors between source and target language task data negatively affect perfor-
mance, a largely overlooked issue that could cause negative transfer with existing
unsupervised approaches. Based on these findings, we propose and evaluate a
method for unsupervised transfer, called importance-weighted domain alignment
(IWDA), that performs representation alignment with prior shift estimation and
correction using unlabeled target language task data. Experiments demonstrate
its superiority under large prior shifts, and show further performance gains when
combined with existing semi-supervised learning techniques.

1 INTRODUCTION

Many recent state-of-the-art results on natural language processing (NLP) tasks are achieved
on transformer-based deep neural language models (LMs) under the “pre-train then fine-tune”
paradigm (Devlin et al., 2019; Conneau & Lample, 2019). Multilingual versions of these LMs
are pre-trained on unannotated and non-parallel texts in more than one language, such as multilin-
gual BERT (mBERT) and XLM-R (Conneau et al., 2020a), and their transformer encoder is shared
across languages. The cross-lingual knowledge these models acquired has enabled zero-shot trans-
fer, meaning that after fine-tuned for a downstream task in one source language, not only would they
work well when evaluated in the source, but also quite decently in almost all languages seen during
pre-training (Wu & Dredze, 2019).

Their success on zero-shot cross-lingual transfer has prompted numerous studies on their multilin-
gual abilities. One recurring hypothesis is that the deep architecture of these models combined
with parameter sharing induced intermediate feature representations that are shared across lan-
guages (Karthikeyan et al., 2020; Conneau et al., 2020b; Muller et al., 2021), but they fall short of
providing insights to the question of how shared representations contribute to cross-lingual learn-
ing?

A potential effect of shared representations is representation invariance, where the model outputs
similar feature representations for semantically similar inputs across all languages (Zhao et al.,
2020). Having language-invariant features means that any predictor trained in one language can
be immediately transferred to other languages, giving the same predictions on inputs with similar
semantics. For classification tasks, the weaker condition of class-conditional invariance is sufficient
for unsupervised cross-lingual transfer, where the distributions of the features conditioned on each
class label are aligned across languages (Zhao et al., 2019; Ben-David et al., 2007).

Our code is available at https://github.com/rxian/domain-alignment.
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We hypothesize that deep transformer-based multilingual LMs achieve cross-lingual transfer with
class-conditional language-invariant representations acquired during pre-training and fine-tuning.
To provide quantitative evidence, through empirical analyses on mBERT and XLM-R, we show that
(1) transfer performance strongly correlates with the class-conditional alignment of feature repre-
sentations for the downstream task (Section 2.1). During our studies, we also observed that (2) per-
formance is negatively affected by distributional shifts in the class priors between source and target
task data (Section 2.2). Despite being a common issue with real-world data, prior shifts have been
largely overlooked, and existing unsupervised cross-lingual transfer methods could cause negative
transfer under its presence (Section 4.2).

Based on the above finding, for cross-lingual learning under the unsupervised setting where access to
target language unlabeled task data is available along with source language labeled data, we propose
importance-weighted domain alignment (IWDA). This method aims to learn language-invariant
representations with feature alignment while accounting for the class prior shift with an importance
weight estimation and correction procedure (Section 3). Our experiments and evaluations on multi-
lingual sentiment analysis, named-entity recognition, and textual entailment show its effectiveness
for unsupervised transfer and superiority over the more common semi-supervised learning (SSL)
methods under large prior shifts. We also show that IWDA and SSL are compatible, where they can
be combined to achieve further performance gains. The results are detailed in Section 4, along with
analyses and discussions.

2 TWO FACTORS AFFECTING CROSS-LINGUAL TRANSFER

This section describes the experiment setup for the empirical analyses on the effects of represen-
tation invariance and class prior shift on cross-lingual transfer performance, and discusses their
implications on the design of unsupervised transfer methods.

Background. We introduce notation by briefly summarizing the “pre-train then fine-tune”
paradigm below. Let g : X → Z denote the feature mapping provided by the pre-trained LM
(Z ⊂ R768 in BERT-Base), and z = g(x) the feature computed on an input token or sentence x. For
token classification tasks, the transformer’s last-layer contextualized token embeddings are taken as
features. For sequence classification, we follow the practice of using the embedding of the start-of-
sentence marker (symbolized as [CLS]); alternatives include mean-pooling the token embeddings.
To compute class label predictions ŷ from the features, a single linear layer with softmax activation
h : Z → Y = {1, 2, · · · , k} is added on top of g, so that ŷ = h(g(x)).

This end-to-end model is transferred and adapted to the downstream task by simultaneously fine-
tuning g and training h on task data. In zero-shot settings, fine-tuning is performed on source
language labeled data only, (x, y) ∼ pS , without access to any target language task data pT .

Setup. Our analysis begins with the following decomposition of the joint feature-label distribution
into a product of class-conditional feature distribution and marginal prior distribution,

p(z, y) = p(z|y)p(y) := p({x ∈ X : g(x) = z}|Y = y)p(Y = y).

Achieving representation invariance between the source and target language means that pS(z|y) =
pT (z|y) for all z ∈ Z , y ∈ Y , and the presence of class prior shift means that pS(y) ̸= pT (y)
for some y. For simplicity, we use the shorthands pZ|Y and pY to denote class-conditional feature
distribution and marginal class prior distribution, respectively.

To study their effects on transfer performance empirically, we compare model performance of
mBERT (cased) and XLM-R Large against the alignment of their class-conditioned features and
prior shift of the dataset on three multilingual downstream classification tasks: sentiment analysis
on the Multilingual Amazon Reviews Corpus (MARC) which covers six high-resource languages,
named-entity recognition on the WikiANN dataset which covers 39 languages of varying linguistic
properties and resources, and textual entailment on the XNLI dataset which covers 15 languages.
Unless otherwise noted, models are only fine-tuned on English data. Due to space constraints, we
present results from mBERT on MARC in this section while deferring the remaining results to Ap-
pendices A.1 and B.
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Figure 1: Zero-shot transfer performance of mBERT on MARC v.s. conditional feature shift (upper-
left; with averages marked by language), class prior shift (lower-left), and both (right). Each scatter
represents a result evaluated on one subsampled target dataset.

On these datasets and language data generally, the (mis)alignment of model representations across
languages could be influenced by corpus-level semantic differences besides linguistic variations. For
instance, Chinese reviews in MARC are disproportionally about books. To simulate these conditions
and study the effects of class prior shifts, we perform our evaluations on 500 smaller datasets sub-
sampled from MARC with various class priors (each contains 2,500 test examples), and 700 from
WikiANN.

2.1 INVARIANCE OF FEATURE REPRESENTATIONS

To measure representation invariance, or the alignment of class-conditioned features between two
languages pZ|Y

S , pZ|Y
T , we compute the following quantity, referred to as conditional feature shift:

1

k

k∑
j=1

D(p
Z|Y=j
S , p

Z|Y=j
T ), (1)

and we use the ℓ1-distance between the feature means as the discrepancy measure,1

D(p, q) :=
∥∥∥Ex∼p[x]− Ex′∼q[x

′]
∥∥∥
1
=

d∑
i=1

∣∣∣Ex∼p[xi]− Ex′∼q[x
′
i]
∣∣∣. (2)

Similar first-moment measures have appeared in prior work (Libovický et al., 2020), but the distinc-
tion here is that the effects of class prior shift are explicitly removed via conditioning, as arbitrary
amounts of unconditioned feature shift could be generated from adjusting the class priors.

In the upper-left panel of Fig. 1, we plot the zero-shot transfer performance2 on MARC of a fine-
tuned mBERT against the conditional feature shift between English and the target language. We ob-
serve that mBERT generally transfers better to languages whose features align well with the source,
and the degree of alignment between languages agrees with prior findings on cross-lingual transfer.
For instance, the commonly analyzed factor of linguistic similarity is reflected by the alignment on
this dataset (Karthikeyan et al., 2020): Spanish, French, and German are considered more linguisti-
cally similar to English and have better feature alignment with English than Japanese and Chinese.

The above findings suggest that achieving representation invariance is desirable for improving zero-
shot cross-lingual transfer, with evidence of empirical success including the work by Cao et al.
(2020) that improves mBERT performance via aligning contextualized word embeddings. But is

1We compared our first-moment measure to more sophisticated metrics such as RBF-kernel MMD (Gretton
et al., 2012) and linear CKA (Kornblith et al., 2019) in preliminary studies, but found tight correlations between
the results in our use case.

2Measured in macro-averaged F1 score instead of accuracy because accuracy could be inflated on datasets
with skewed priors (Azizzadenesheli et al., 2019).
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Figure 2: Transfer performance of mBERT on MARC under two learning settings v.s. conditional
shift of intermediate representations. mBERT is fine-tuned with the classification head added on
top of [CLS] embedding, but we plot the shifts of both [CLS] (upper panels) and mean-pooled
embeddings (lower panels). This is because [CLS] embeddings are not informative until they are
contextualized in upper layers. Each curve represents a result evaluated on one subsampled target
dataset.

invariance suitable when access to target language (unlabeled) task data is available under unsuper-
vised transfer settings considered in prior work (Keung et al., 2019; Wu et al., 2020)? We perform
the same empirical evaluation as above, but instead of testing every unsupervised approach, we
fine-tune the model with supervision on both source and target languages. This is because most
unsupervised objectives consist of a loss on labeled source data, and terms involving unlabeled data
that are in theory linked to the true loss on target data, so their ideal objective is the supervised loss.

In Fig. 2b, we plot the conditional feature shift of mBERT trained under bilingual supervision.
Unlike Fig. 1, because last-layer conditional alignment could be an artifact of having a linear classi-
fication head on top and using cross-entropy loss (Papyan et al., 2020), the shift on all intermediate
layers of mBERT is shown. Compared to the zero-shot model in Fig. 2a, we see that the supervised
model’s better performance is accompanied by improved representation alignment across all layers.
This suggests that language-invariant features are preferred over potentially language-specific ones
for cross-lingual transfer, and serves as the basis for our algorithm in Section 3.

2.2 DISTRIBUTIONAL SHIFTS IN CLASS PRIORS

To measure class prior shift between source and target task data, we compute the total variation
between pYS and pYT . In the lower-left panel of Fig. 1, we plot the zero-shot transfer performance of
mBERT against class prior shifts, and observe that performance generally degrades as prior shift in-
creases regardless of how well the features are aligned. Furthermore, we observe in Appendix A.1.1
that the degradation is aggravated when the source prior distribution is skewed, i.e., highly concen-
trated on a few classes.

Although prior shift is typical with real-world data, most benchmarks for cross-lingual transfer eval-
uation are constructed with uniform class priors so as not to shift the focus to “‘tricks’ for how
to best handle the class imbalance” (Schwenk & Li, 2018). However, unsupervised methods that
leverage unlabeled target data could be affected by prior shifts, and in cases, as we show with ex-
isting approaches in Section 4, result in worse performance than zero-shot transfer. This was not
detected in prior work because evaluations were performed on class-balanced data only. Our pro-
posed method includes an estimation and correction procedure, and our evaluation on data with prior
shifts demonstrates its consistent performance even under large shifts (Section 4.2).

To conclude our analysis, we plot conditional feature shift jointly with prior shift against mBERT
zero-shot transfer performance in the right panel of Fig. 1, and observe strong correlations between
performance and either of the two factors when controlling the other.
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3 IMPORTANCE-WEIGHTED DOMAIN ALIGNMENT

For unsupervised cross-lingual learning with access to target language unlabeled task data along with
labeled ones in source, the findings in the previous section suggest that good transfer performance
could be achieved with class-conditional feature alignment and prior shift correction. Based on
these principles, we propose class-importance-weighted domain alignment (IWDA), which closely
follows the work by Tachet des Combes et al. (2020). Here, we provide a high-level description of
the algorithm and highlight fixes for addressing previously undiscovered optimization instabilities.
Implementation details are deferred to Appendix C.1.

Assume for now that class priors are known, and denote the true importance weights (IWs) by w∗
j :=

pT (Y = j)/pS(Y = j). In Section 2.1, we demonstrated that class-conditional feature alignment,
p
Z|Y
S = p

Z|Y
T , is desired for unsupervised transfer, but achieving this goal requires knowing the true

label for every target example. Instead, we aim for a weaker goal but a necessary condition (Tachet
des Combes et al., 2020), called class-weighted feature alignment, pw

∗,Z
S = pZT , where

pw
∗

S (x, Y = j) := pS(x|Y = j)pS(Y = j)w∗
j = pS(x|Y = j)pT (Y = j).

If the true w∗ is unknown, it can be estimated when conditional feature alignment is satisfied (also
known as the label shift assumption) by solving a set of equations obtained from the following first-
order relation between the target prediction distribution Ŷ := h(g(X)), source confusion matrix,
and w∗ (Saerens et al., 2002; Lipton et al., 2018):

pT (Ŷ = i) =
k∑

j=1

pT (Ŷ = i|Y = j)pT (Y = j) =
k∑

j=1

pS(Ŷ = i|Y = j)pT (Y = j) =
k∑

j=1

pS(Ŷ = i, Y = j)w∗
j .

(3)

However, if none of the assumptions are satisfied, then there is no guarantee for achieving either
of the goals above without other assumptions. The hope here is that because zero-shot models are
shown to be largely aligned, by alternating the optimization towards both goals, small incremental
improvements to feature alignment could make prior shift estimates more accurate, and vice versa.

Optimization. We define the following two objectives for g, h and w,

min
g,h

(
E(x,y)∼pS

[ℓ(h(g(x)), y)] + λ ·D(pw,Z
S , pZT )

)
, and min

w

k∑
ŷ=1

(
pT (ŷ)−

k∑
y=1

pS(ŷ, y)wy

)2

.

The alignment objective minimizes source loss and the distributional discrepancy between w-
weighted source features and target features. The IW estimation objective solves Eq. (3) with MSE
loss using current statistics from g, h, with the constraints w ≥ 0 and w⊤pYS = 1.

We reformulate the alignment objective into a minimax problem optimized with adversarial train-
ing, replacing D with a shallow ReLU network Wasserstein-1 critic and zero-centered gradient
penalty (Arjovsky et al., 2017; Thanh-Tung et al., 2019). We found that Wasserstein-1 adversarial
loss responds to importance weighting better than cross-entropy loss (Ganin et al., 2016).

Improving Stability of IW Estimates. In our preliminary experiments with the IW estimation
procedure by Tachet des Combes et al. (2020), which solves Eq. (3) with a quadratic program once
every epoch, we found that the estimates always tend to 1 in long training episodes (i.e., no shift is
estimated) although prior shifts are present, and even if they were accurate in previous iterations.
This issue was not previously documented, and we speculate the cause to be the noise and fluctu-
ations from the optimization procedure for feature alignment. Another behavior we found is the
tendency of overestimating the majority class of the target data.

To address these instabilities, we include three fixes in our implementation while leaving further
investigations to future work. We (1) update w at every training step with projected gradient descent
for always keeping it close to optimality, (2) use a decaying learning rate schedule for w, and (3) add
ℓ2-regularization to w (Azizzadenesheli et al., 2019).
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4 EXPERIMENTS

We apply importance-weighted domain alignment (IWDA) to fine-tune mBERT (cased) and XLM-
R Large for unsupervised cross-lingual learning, and compare it to baseline methods based on two
semi-supervised learning (SSL) techniques. The NLP tasks are sentiment analysis, named-entity
recognition (NER), and textual entailment. As with most work on cross-lingual transfer, English is
used as the source language in our experiments.

In addition to standard multilingual benchmarks where the priors are (largely) the same across lan-
guages (Section 4.1), we also use datasets subsampled with varying priors as in Section 2 to evaluate
performance under prior shifts and investigate the limitations of existing approaches (Section 4.2).

Datasets. For NER, two multilingual benchmarks are used: CoNLL-2002 & 2003 (Tjong
Kim Sang, 2002; Tjong Kim Sang & De Meulder, 2003) and WikiANN (Pan et al., 2017; Rahimi
et al., 2019). The former includes English, German, Spanish and Dutch, and the latter covers over
200 languages, from which a subset of 40 in the XTREME benchmark is selected (Hu et al., 2020).
Although prior shifts (relative to English) are present in these datasets, they are mostly mild ex-
cept for some languages in WikiANN. For sentiment analysis, the Multilingual Amazon Reviews
Corpus (MARC) is used (Keung et al., 2020), which consists of product ratings and reviews in En-
glish, German, Spanish, French, Japanese, and Chinese. For textual entailment, the XNLI dataset
is used (Conneau et al., 2018), where each example is a sentence pair and the task is to determine
whether the first sentence entails or contradicts the second, or neither. The test and validation exam-
ples are human-translated from English into 14 languages, and the training examples are machine-
translated (Conneau & Lample, 2019).

Baselines. Knowledge distillation (KD) transfers knowledge from the source to the target domain
by first training a teacher model on labeled source data then training a student model to mimic the
teacher outputs on unlabeled target data (Hinton et al., 2015). A variant of KD was evaluated on
NER by Wu et al. (2020), whose modifications include freezing the bottom three layers of the teacher
and student mBERTs (Wu & Dredze, 2019). Self-training (ST) trains the model on source labeled
data first, then iteratively assigns pseudo-labels to unlabeled target data and trains on the most confi-
dent predictions (Nigam & Ghani, 2000). Our implementation is based on Dong & de Melo (2019),
which was evaluated on sequence classification tasks with mBERT. While these baselines are not
exhaustive, they are representative in that most methods for unsupervised cross-lingual transfer in-
volve procedures that share the same fundamental ideas. For instance, Bari et al. (2021) combined
data augmentation with an extension of self-training, called tri-training (Zhou & Li, 2005).

For IWDA, a two-stage procedure is applied, where we first fine-tune the model on labeled source
data only (zero-shot learning), then continue with the IWDA objectives on the source and unlabeled
target task data, both for four epochs. We also evaluate the effectiveness of class-weighted feature
alignment by assuming knowledge of target class priors, and label the results IWDA (oracle).

The hyperparameter settings are included in Appendix C.2. Due to space constraints, we present
results from mBERT on sentiment analysis and NER in this section while deferring results on XNLI
and from XLM-R in Appendix A.2 and B. Unless otherwise noted, results are from our implemen-
tation.

4.1 RESULTS ON STANDARD BENCHMARKS

Results with mBERT for sentiment analysis on MARC are presented in Table 1, and those for
NER on CoNLL datasets and three low-resource languages on WikiANN are presented in Tables 2
and 3, respectively. The remaining WikiANN results are included in Table 5 in the appendix. All
IWDA results show improvements upon the zero-shot baselines, and are accompanied by decreases
in conditional feature shift. The average decreases (measured with Eqs. (1) and (2), with 100%
being perfect alignment) are 51.53% and 64.77% (oracle) on MARC, 21.60% and 22.33% (oracle)
on CoNLL, and 32.91% and 36.34% (oracle) on WikiANN.

IWDA, however, sometimes fall short of SSL baselines, which is likely due to the noise from the
optimization and adversarial training as well as some amounts of incorrect alignment that cannot
generally be prevented, as discussed in Section 3. One way to reduce noise is to improve optimality
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Table 1: mBERT on MARC (in accuracy).

en de es fr ja zh

Supervised and zero-shot baselines

Supervised (in-language) 58.50 61.19 57.76 57.05 57.97 53.74
Zero-shot 58.50 44.80 46.49 46.02 37.37 38.48

Unsupervised results

Wu et al., 2020 - 47.43 49.56 49.06 35.77 38.54
ST 58.25 50.74 48.80 47.96 42.10 41.40

IWDA 56.87 51.94 49.77 49.78 42.62 44.04
+ KD 58.55 54.02 51.74 51.67 45.14 45.25
+ ST 56.41 53.11 51.00 49.91 43.59 45.27

IWDA (oracle) 55.96 51.95 50.83 50.01 44.91 45.96

Table 2: mBERT on CoNLL (in F1).

en de es nl

Supervised and zero-shot baselines

Supervised (in-language) 91.97 82.82 87.38 90.94
Zero-shot 90.57 69.77 74.14 78.28

Unsupervised results

Keung et al., 2019 - 71.9 74.3 77.6
Wu et al., 2020 - 73.22 76.94 80.89
IWDA 90.77 72.56 76.11 78.63
+ KD 90.89 73.71 77.14 79.72

IWDA (oracle) 90.75 72.58 76.48 79.17

Table 3: mBERT on WikiANN (in F1).

en bn my ur

Supervised and zero-shot baselines

Supervised (in-language) 83.73 92.69 69.08 93.29
Zero-shot 83.73 68.55 50.16 35.78

Unsupervised results

Wu et al., 2020 - 71.78 46.32 44.52

IWDA 83.93 71.05 55.86 75.79
+ KD 83.07 73.15 56.05 77.58

IWDA (oracle) 83.93 72.19 60.22 74.98

of the adversarial critic throughout training with more updates and passes over the data, and with
which we observe improved performance on CoNLL (Table 4). Another way to reduce noise is to
follow IWDA with a final stage SSL fine-tuning because of their label smoothing effects (Yuan et al.,
2020). Alternatively, we can view IWDA as a pre-processing step for SSL, since they theoretically
rely on the assumption that source and target data are identically distributed, which IWDA helps
satisfy with class-weighted feature alignment. These experiments are labeled by IWDA + KD and
IWDA + ST, and mostly achieve the best results among unsupervised methods (in bold).

Finally, we note that the performance from applying IWDA alone depends on (1) whether pre–
trained representations are already partially aligned, which is shown for mBERT in Section 2, and
(2) whether the benefits of enhancing the feature alignment outweigh the noise from IWDA and
the potential small amounts of misalignment. The latter may not always hold, especially on larger
models with better zero-shot transferability. For instance, zero-shot learning with XLM-R Large
on MARC achieves better performance and feature alignment than mBERT, and although applying
IWDA reduces conditional feature shift, results are worse than zero-shot baselines (Table 7). In
these cases, we expect the utility of IWDA to be realized when combined with additional resources,
but leave investigations to future work. For instance, Bari et al. (2021) achieve good performance
on XLM-R with data augmentation that leverages the multilingual mask-filling ability of XLM-R.

4.2 RESULTS UNDER CLASS PRIOR SHIFTS

In this section, we evaluate IWDA and SSL methods on mBERT under class prior shift between
source and target task data by performing unsupervised transfer from English to Japanese on MARC
and from English to German on CoNLL, using the same datasets subsampled with varying priors in
Section 2. The results relative to zero-shot baselines are plotted in Fig. 3.

For IWDA, we observe consistent improvements across the range of prior shifts. SSL approaches
are also performant under mild to no shifts, but quickly deteriorate as the shift increases, eventually
resulting in negative transfer. This failure mode is not due to prior shift alone, but also the lack
of conditional alignment between source and target data that SSL assumes. As demonstrated with
IWDA + ST and KD results, when feature alignment is improved, subsequent SSL training can
deliver better performance and avoid negative transfer under large shifts.
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Figure 3: Percent improvement in mBERT transfer performance (macro-averaged F1) over zero-shot
baselines (0%) when applying unsupervised methods under presence of class prior shifts, evaluated
on datasets subsampled from MARC and CoNLL with varying priors.

We note that the importance weighting (IW) procedure in IWDA is integral to its performance under
the presence of any amount of prior shift, and any alignment-based methods that do not account for
it will result in negative transfer. This is because under prior shift, unweighted feature alignment
means that some target features from one class must be aligned with source features from a differ-
ent class, hence any classifier trained on the source will make mistakes on those misaligned target
features (Zhao et al., 2019). We demonstrate this on CoNLL English to German transfer in Fig. 7
in the appendix, where IWDA without IW sees decreasing performance as training progresses even
though the shift is mild.

Interestingly, Keung et al. (2019) apply an alignment-based method to CoNLL NER without IW
that does not cause negative transfer (Table 2). This is because their method does not align the token
embeddings that are used as features by the linear classification head, but the [CLS] embeddings.
Since the [CLS] embeddings contain context information computed from the (intermediate) token
embeddings, their alignment can be viewed as a weak alignment of the features. Although it avoids
the negative transfer from prior shifts, it also misses opportunities for greater performance gains, as
comparisons with IWDA results show.

Finally, we report the accuracy of the IW estimates. The average percent prior shift corrections,
computed as the decrease in total variation (TV) between true target priors and final estimated priors
normalized by the amount of shift (with 100% being perfectly accurate), are 87.33% on CoNLL
and 28.08% on MARC for shifts over 0.8 in TV. For shifts under 0.8, the estimates are often worse
than simply (although incorrectly) assuming a uniform prior, with a -335.8% in correction. This is
because MARC reviews have noisy labels (as one could waver between giving a 3- or 4-star rating),
and datasets with more class balance are harder to train on even with supervision, so the performance
of the IW estimator could be affected by bad source confusion matrices (Lipton et al., 2018).

5 ADDITIONAL RELATED WORK

Cross-Lingual Ability of Multilingual LMs. Most work investigating the cross-lingual ability of
mBERT perform analysis via probing experiments, through which they identify factors that affect
transfer performance that include linguistic similarity, size of pre-training corpus, domain simi-
larity, parameter sharing, and model depth (Pires et al., 2019; Karthikeyan et al., 2020; Lauscher
et al., 2020; Conneau et al., 2020b; Dufter & Schütze, 2020). Another line of research, includ-
ing the present work, examines the intermediate representations and observes that mBERT learns
cross-lingually shared representations that contribute to transfer performance (Wu & Dredze, 2019;
Conneau et al., 2020b; Muller et al., 2021).

Language-Invariant Representations. The idea of learning language-invariant representations is
not new and has served as the basis for a long history of approaches for cross-lingual transfer on
neural LMs.
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For static word embedding models, language-invariance is achieved by aligning the embeddings of
bilingual dictionary pairs (Mikolov et al., 2013; Smith et al., 2017). With adversarial training, the
dictionary need not be provided as it could be automatically induced (Zhang et al., 2017; Artetxe &
Schwenk, 2019; Patra et al., 2019; Dubossarsky et al., 2020), and this approach has powered many
unsupervised machine translation approaches (Artetxe et al., 2018; Lample et al., 2018; Arivazhagan
et al., 2019; Pham et al., 2019; Hu et al., 2021). For deep models such as mBERT, language-
invariance is achieved with a cross-lingual feature representation induced by sharing the transformer
body (Artetxe et al., 2020b; Pfeiffer et al., 2020).

Under unsupervised and supervised settings, prior work has proposed cross-lingual learning tech-
niques based on representation alignment for models ranging from static word embeddings (Joty
et al., 2017; Chen et al., 2018), RNN (Kim et al., 2017; Huang et al., 2019), to mBERT (Keung
et al., 2019; Zheng & Lapata, 2019; Xia et al., 2021). For a survey, see (Ruder, 2019).

Domain Adaptation. Our method, based on the work of Tachet des Combes et al. (2020), is
initially motivated by the problem of (unsupervised) domain adaptation, a framework for handling
domain shifts between training and test data (Ben-David et al., 2007). For example, training a POS
tagger on news articles with the goal of deploying it on biomedical papers, whose vocabulary is
significantly different.

For unsupervised cross-lingual learning, we may apply adaptation techniques proposed for domain
shift for cross-lingual transfer by treating task data in each language as a distinct domain. Be-
sides alignment-based methods (Li et al., 2020; Vernikos et al., 2020), including ours, another
family of approaches is semi-supervised learning, such as self-training (Dong & de Melo, 2019),
tri-training (Ruder & Plank, 2018), knowledge distillation (Wu et al., 2020), and data augmenta-
tion (Wang et al., 2018; Maharana & Bansal, 2020).

6 CONCLUSION AND FUTURE WORK

Motivated by the question of how shared representations contribute to cross-lingual learning on
multilingual neural LMs, we perform empirical analyses that showed that downstream cross-lingual
transfer performance is strongly correlated with the invariance of feature representations and nega-
tively affected by the class prior shift between source and target task data. Based on these findings,
we propose and evaluate importance-weighted domain alignment (IWDA) for unsupervised cross-
lingual transfer, and show its effectiveness for unsupervised transfer and superiority over semi-
supervised learning (SSL) methods under large prior shifts. Furthermore, by combining IWDA and
SSL, further performance gains are achieved.

While our present implementation of IWDA is largely effective, it could be improved with future
work on unsupervised domain adaptation, and techniques for prior shift estimation and distribu-
tion alignment, including or beyond adversarial training. Following the results from combining
IWDA and SSL, further experiments could include combining it with more elaborate approaches
for unsupervised cross-lingual transfer. Finally, the success of existing zero-shot and unsupervised
methods is contingent upon the cross-lingual representations acquired by the pre-trained LMs with-
out supervision. Fundamental improvements to their transfer require continued investigation on the
emergence of their cross-lingual ability.

ACKNOWLEDGMENTS

We thank Keyulu Xu and Mozhi Zhang for helpful discussions, and the anonymous reviewers for
valuable comments. HZ would like to thank the support from a Facebook research award.

REFERENCES

Amr Alexandari, Anshul Kundaje, and Avanti Shrikumar. Maximum Likelihood with Bias-
Corrected Calibration is Hard-To-Beat at Label Shift Adaptation. In Proceedings of the 37th
International Conference on Machine Learning, pp. 222–232, 2020.

9



Published as a conference paper at ICLR 2022

Naveen Arivazhagan, Ankur Bapna, Orhan Firat, Roee Aharoni, Melvin Johnson, and Wolf-
gang Macherey. The Missing Ingredient in Zero-Shot Neural Machine Translation, 2019.
arXiv:1903.07091 [cs.CL].

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein Generative Adversarial Net-
works. In Proceedings of the 34th International Conference on Machine Learning, pp. 214–223,
2017.

Mikel Artetxe and Holger Schwenk. Massively Multilingual Sentence Embeddings for Zero-Shot
Cross-Lingual Transfer and Beyond. Transactions of the Association for Computational Linguis-
tics, 7:597–610, 2019.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and Kyunghyun Cho. Unsupervised Neural Machine
Translation. In International Conference on Learning Representations, 2018.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. Translation Artifacts in Cross-lingual Transfer
Learning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 7674–7684, 2020a.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama. On the Cross-lingual Transferability of Mono-
lingual Representations. In Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics, pp. 4623–4637, 2020b.

Mikel Artetxe, Sebastian Ruder, Dani Yogatama, Gorka Labaka, and Eneko Agirre. A Call for More
Rigor in Unsupervised Cross-lingual Learning. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 7375–7388, 2020c.

Kamyar Azizzadenesheli, Anqi Liu, Fanny Yang, and Animashree Anandkumar. Regularized Learn-
ing for Domain Adaptation under Label Shifts. In International Conference on Learning Repre-
sentations, 2019.

M Saiful Bari, Tasnim Mohiuddin, and Shafiq Joty. UXLA: A Robust Unsupervised Data Aug-
mentation Framework for Zero-Resource Cross-Lingual NLP. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International Joint Con-
ference on Natural Language Processing (Volume 1: Long Papers), pp. 1978–1992, 2021.

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of Representations
for Domain Adaptation. In Advances in Neural Information Processing Systems, 2007.

Steven Cao, Nikita Kitaev, and Dan Klein. Multilingual Alignment of Contextual Word Represen-
tations. In International Conference on Learning Representations, 2020.

Xilun Chen, Yu Sun, Ben Athiwaratkun, Claire Cardie, and Kilian Weinberger. Adversarial Deep
Averaging Networks for Cross-Lingual Sentiment Classification. Transactions of the Association
for Computational Linguistics, 6:557–570, 2018.

Alexis Conneau and Guillaume Lample. Cross-lingual Language Model Pretraining. In Advances
in Neural Information Processing Systems, 2019.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel Bowman, Holger
Schwenk, and Veselin Stoyanov. XNLI: Evaluating Cross-lingual Sentence Representations. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp.
2475–2485, 2018.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,
Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Un-
supervised Cross-lingual Representation Learning at Scale. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 8440–8451, 2020a.

Alexis Conneau, Shijie Wu, Haoran Li, Luke Zettlemoyer, and Veselin Stoyanov. Emerging Cross-
lingual Structure in Pretrained Language Models. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pp. 6022–6034, 2020b.

10



Published as a conference paper at ICLR 2022

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Xin Dong and Gerard de Melo. A Robust Self-Learning Framework for Cross-Lingual Text Clas-
sification. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 6306–6310, 2019.
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Figure 4: Zero-shot transfer performance of mBERT on WikiANN v.s. conditional shift of inter-
mediate representations (lower-left), final-layer features (upper-left; with averages marked by lan-
guage), and jointly with class prior shift (right).
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Figure 6: Zero-shot transfer performance of mBERT on two datasets v.s. conditional feature shift
jointly with class prior shift. Models are trained on source data with skewed prior distributions.
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A ADDITIONAL MBERT RESULTS

A.1 ADDITIONAL MBERT ANALYSES

In Section 2, we demonstrate that transfer performance of mBERT is strongly correlated with feature
alignment and (negatively) class prior shift between source and target task data. Here, we show that
these observations also hold when transferring to NLP tasks besides sentiment analysis.

Named-Entity Recognition (NER). We use the WikiANN dataset, and analysis is performed on
700 smaller datasets subsampled from the original WikiANN with varying priors. As the 39 lan-
guages in this datasets have distinct linguistic properties and different resourcefulness (a summary
of the languages can be found in Table 5 of (Hu et al., 2020), and the sizes their pre-training data in
Table 1 of (Wu & Dredze, 2020)), results shall be less influenced by confounding effects, if any.

The results are provided in Fig. 4. We observe the same correlations, but they are weaker between
the prior shift and the performance. This is likely because NER is a structured prediction problem
where mBERT could leverage dependencies between words for its predictions, making it robust to
prior shifts. However, the effects of prior shift will become pronounced if the source data have a
skewed prior distribution, which we show below in Fig. 6b and discuss in Section A.1.1.

Textual Entailment. For this high-level semantic task, we use the XNLI dataset, where we train
the model on the English portion and evaluate on human-translated validation data in 14 target
languages. We do not subsample XNLI because of the small data size, hence prior shift results are
not included. The results are presented in Fig. 5.

A.1.1 SOURCE DATA WITH SKEWED PRIORS

So far in our analyses, we have only evaluated models that trained on relatively class-balanced source
datasets. We show that if the class prior distribution of the source data is skewed, then the negative
effects of prior shift on transfer performance are more prominent.

For this study, we use MARC. We generate a skewed English dataset via subsampling according
to the prior distribution of 14.86%, 6.43%, 8.03%, 19.28%, and 51.41%,3 corresponding to the
proportion of 1- to 5-star reviews. We then train mBERT on this dataset and evaluate its performance
on subsampled target datasets. The results are presented in Fig. 6a, where the correlation between
performance and prior shift is much stronger than when the source is class-balanced (Fig. 1).

We also evaluate on WikiANN. Although its original English portion is already considerably skewed
(with class O making up 50.75% of the labels), its influence is observed to be mild likely because
NER is a structured prediction problem as discussed above (Fig. 4). We skew its prior distribution
by keeping only sequences containing at least one O label, increasing its proportion to 80.92%. The
results of mBERT trained on this dataset are presented in Fig. 6b, where we now see pronounced
effects from prior shifts on transfer performance.

A.2 ADDITIONAL MBERT EXPERIMENTS

In Table 5, we present IWDA results on WikiANN in the 36 target languages not included in Table 3.

In Table 4, we present improved IWDA results on CoNLL when the adversary enjoys better op-
timization with more updates (we alternate between four adversary steps and one representation
alignment step instead of performing simultaneous updates) and passes over the data (training took
40 passes over the data). We decrease lambda_iw from 2 to 1.

In Fig. 7, we show that IWDA without IW would cause negative transfer under prior shifts as dis-
cussed in Section 4.2, even under the mild shift between English and German on CoNLL.

3This is the actual distribution of product ratings on Amazon.com (McAuley & Leskovec, 2013).
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Table 4: mBERT on CoNLL NER (in F1) when
the adversary enjoys better optimization. Re-
sults in bold are best among unsupervised meth-
ods including those in Table 2.
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Figure 7: mBERT transfer performance on
CoNLL from English to German v.s. update
steps. Comparing IWDA to without IW.

Table 5: mBERT on WikiANN (in F1).

en af ar bg bn de el es et eu

Supervised 83.73 91.36 87.62 92.64 92.69 89.47 90.55 91.42 91.58 91.72
Zero-shot 83.73 77.63 40.68 77.89 68.55 79.01 71.19 76.73 76.74 59.76

IWDA 83.93 77.50 37.59 78.57 71.05 78.86 72.19 83.37 79.16 67.11
IWDA (oracle) 83.93 77.18 37.29 79.65 72.19 79.07 72.13 83.72 80.23 72.69

fa fi fr he hi hu id it ja jv

Supervised 92.11 91.20 90.15 85.19 86.10 92.67 91.88 91.44 73.18 73.71
Zero-shot 40.27 77.87 80.47 56.55 66.08 76.55 60.67 80.67 27.49 61.51
IWDA 28.32 78.43 79.99 56.57 64.37 76.00 51.35 80.46 38.05 61.48
IWDA (oracle) 46.33 79.56 83.78 57.62 67.01 76.69 72.00 80.99 34.98 60.57

ka kk ko ml mr ms my nl pt ru

Supervised 86.55 85.06 87.71 82.68 85.42 93.27 69.08 91.37 91.45 88.28
Zero-shot 66.41 46.87 60.52 53.33 57.97 67.63 50.16 82.16 80.07 65.61

IWDA 67.14 48.15 61.18 53.75 61.80 69.78 55.86 81.03 82.40 66.00
IWDA (oracle) 67.39 49.11 63.29 59.47 61.55 69.01 60.22 81.05 83.66 72.00

sw ta te th4 tl tr ur vi yo zh

Supervised 88.98 83.53 78.53 76.84 93.64 92.35 93.29 90.83 82.93 81.14
Zero-shot 69.35 50.22 50.63 1.31 69.57 73.78 35.78 71.19 49.29 43.29

IWDA 67.56 53.93 52.09 1.60 75.16 74.36 75.79 80.20 52.07 49.90
IWDA (oracle) 67.40 55.46 53.84 8.39 76.50 78.64 74.98 78.85 54.60 56.26

Table 6: mBERT on non-benchmark XNLI (in accuracy).

en ar bg de el es fr hi ru sw th tr ur vi zh

Supervised and zero-shot baselines

Supervised (bilingual) 73.60 65.32 68.58 68.94 66.32 71.18 69.28 63.02 67.66 57.32 63.36 63.02 48.60 68.24 69.62
Zero-shot 73.60 60.64 60.60 67.12 63.14 67.58 67.06 57.30 64.30 47.28 51.40 57.36 43.16 62.98 63.70

Unsupervised learning

ST 73.04 60.20 63.40 66.30 62.00 67.92 67.16 56.62 64.32 47.76 53.40 57.80 46.04 62.88 63.90

IWDA 73.03 61.16 64.16 67.30 62.68 68.28 67.34 57.92 65.06 47.78 54.80 58.00 44.24 63.60 65.08
+ ST 73.10 60.28 64.18 66.66 62.44 68.02 66.96 57.70 64.56 48.26 53.78 57.92 46.94 63.40 65.12

IWDA (oracle) 72.94 60.74 64.62 67.02 63.22 68.88 67.06 58.88 64.84 45.96 54.50 59.36 46.76 64.28 65.82

4The bad zero-shot and unsupervised performance on Thai is due differences in the tokenization schemes
used by mBERT and WikiANN dataset creators, who split diacritical characters into multiple tokens.
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Figure 8: Zero-shot transfer performance of XLM-R on MARC v.s. conditional shift of intermediate
representations (lower-left), final-layer features (upper-left; with averages marked by language), and
jointly with class prior shift (right). Each curve and scatter represents a result on one subsampled
dataset, and the [CLS] embeddings are examined.
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Figure 9: Percent improvement in XLM-R transfer performance (macro-averaged F1) over zero-shot
baselines (0%) when applying unsupervised methods under presence of class prior shifts, evaluated
on datasets subsampled from MARC and CoNLL with varying priors.

Textual Entailment. In addition to sentiment analysis and NER on which IWDA is evaluated in
Section 4, we evaluate on the high-level semantic task of textual entailment using the XNLI dataset.

Non-English XNLI test data are human-translated from English, but the training data are only avail-
able in machine translations (Conneau et al., 2020a). Since IWDA training requires unlabeled target
task data, to avoid confounding effects due to data parallelism and domain shift from machine-
translation artifacts (Artetxe et al., 2020a), we partition machine-translated data into equal portions
of size 20,000 (5% of the original size) and randomly select disjoint partitions as source and target as
in (Bari et al., 2021). The results are included in Table 6 (due to the setup, they are non-benchmark).

B XLM-R RESULTS

Besides mBERT, we also include analysis and experiment results with XLM-R Large, a larger model
pre-trained on more data that achieves state-of-the-art cross-lingual learning performance.

In Fig. 8 on the next page, by evaluating on MARC, we show that the correlations between feature
alignment, prior shift and performance also hold on XLM-R. In Table 7, we present IWDA and SSL
results when applied to XLM-R on MARC. A discussion on these results is included in Section 4.1.
In Tables 8, 9, and 10, we present results on CoNLL, WikiANN (low-resource languages), and
XNLI, respectively. In Fig. 9, we present IWDA and SSL results on MARC English to Japanese
transfer and CoNLL English to German under prior shifts. We see that IWDA also outperforms SSL
with XLM-R under large prior shifts, where the latter often causes negative transfer.
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Table 7: XLM-R on MARC (in accuracy).

en de es fr ja zh

Supervised and zero-shot baselines

Supervised (in-language) 62.05 64.66 60.70 59.40 60.40 56.24
Zero-shot 62.05 62.52 59.04 56.43 54.32 51.42

Unsupervised results

Wu et al., 2020 - 62.96 57.50 56.50 53.38 50.90
ST 61.00 62.32 58.09 56.62 55.27 52.10

IWDA 60.21 61.13 56.93 56.27 54.87 50.57
+ KD 60.26 62.42 58.60 57.24 56.94 52.20
+ ST 60.05 61.59 57.52 56.05 55.43 51.73

IWDA (oracle) 59.99 61.33 57.65 56.20 56.27 52.39

Table 8: XLM-R on CoNLL (in F1).

en de es nl

Supervised and zero-shot baselines

Supervised (in-language) 92.92 85.81 89.72 92.53
Zero-shot 92.49 72.37 77.06 82.03

Unsupervised results

Wu et al., 2020 - 73.68 78.52 81.86
Bari et al., 2021 - 80.99 83.24 85.32
IWDA 92.55 75.42 79.08 81.79
+ KD 92.26 76.66 79.43 82.05

IWDA (oracle) 92.42 75.32 78.94 81.82

Table 9: XLM-R on WikiANN (in F1).

en bn my ur

Supervised and zero-shot baselines

Supervised (Hu et al., 2020) 84.7 97.8 76.8 97.1
Zero-shot 83.55 76.24 58.12 62.66

Unsupervised results

Wu et al., 2020 - 73.49 51.60 56.05
Bari et al., 2021 - 82.68 70.61 84.99
IWDA 83.44 78.59 55.37 76.27
+ KD 81.34 79.40 55.87 78.03

IWDA (oracle) 83.49 77.22 60.00 80.17

Table 10: XLM-R on non-benchmark XNLI (in accuracy).

en ar bg de el es fr hi ru sw th tr ur vi zh

Supervised and zero-shot baselines

Supervised (bilingual) 84.36 77.48 79.08 80.42 80.26 81.18 80.16 70.82 78.24 68.14 77.24 74.02 49.68 77.20 77.08
Zero-shot 84.36 74.72 77.42 78.58 77.68 80.26 79.14 68.12 76.84 64.30 73.82 72.30 45.82 74.92 75.20

Unsupervised learning

ST 84.35 74.78 78.14 78.10 77.60 79.48 79.26 67.20 76.90 64.60 73.94 72.00 47.26 73.82 74.54

IWDA 84.61 74.31 77.32 78.36 77.22 80.14 79.54 67.92 76.94 64.20 74.12 71.64 45.70 74.44 74.94
+ ST 84.51 75.62 77.36 78.82 77.46 79.94 79.20 67.94 76.84 65.70 74.14 72.30 47.12 74.14 75.86

IWDA (oracle) 84.69 74.68 77.98 78.58 78.22 79.78 79.74 68.24 76.90 64.56 74.14 72.84 46.98 75.20 76.10
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C IMPLEMENTATION DETAILS

C.1 ADDITIONAL IWDA DETAILS

This section complements the high-level description of IWDA given in Section 3 with more details
on the implementation.

Recall the alignment and importance weight (IW) estimation objectives from Section 3, reproduced
below:

min
g,h

(
E(x,y)∼pS

[ℓ(h(g(x)), y)] + λ ·D(pw,Z
S , pZT )

)
, and min

w

k∑
ŷ=1

(
pT (ŷ)−

k∑
y=1

pS(ŷ, y)wy

)2

.

(4)

Alignment Objective. The alignment objective contains a discrepancy term between importance-
weighted source and target feature distributions. The source task loss is added to prevent g from
degenerating to a trivial representation, e.g., constant maps x 7→ c.

We reformulate it as a minimax problem by replacing the explicit evaluation of the discrepancy D
with a critic function f (also called the adversary), as in generative adversarial networks (GAN)
literature (Ganin et al. 2016; Goodfellow et al. 2014). The role of the adversary is to distinguish
features z := g(x) computed on examples x sampled from the source domain from those on target
examples, by outputting scores for predicting the label of the originating domain (w.l.o.g. source
inputs are labeled 0). The adversary would not distinguish source and target features when they are
well-aligned.

The above turns the alignment objective into

min
g,h

(
E(x,y)∼pS

[ℓ(h(g(x)), y)] + λmax
f∈F

(
Ex∼pw,X

S
[ℓad(f(g(x)), 0)]− Ex∼pX

T
[ℓad(f(g(x)), 1)]︸ ︷︷ ︸

(△)

))
,

where ℓad is a specific choice of adversarial loss accompanied by an adversary function class F ∋ f .
The inputs to this loss function are the scores computed by the adversary and the domain labels of
the examples.

In our implementation, we use Wasserstein-1 loss for ℓad, whose accompanying adversary function
class F is the set of 1-Lipschitz functions (Arjovsky et al., 2017). It is shown that when f attains
its maximum, the term (△) exactly computes the Wasserstein-1 distance between pw,Z

S and pZT . We
parameterize F as a ReLU network with one hidden layer of width 2048. The Lipschitz condition
is enforced using soft constraints in the form of zero-centered gradient penalty, which penalizes the
gradient norm of f evaluated at randomly sampled points z̃ ∈ Z interpolating between pairs of
source and target features (Thanh-Tung et al., 2019).

For added stability, we condition the alignment of features on their pseudo-labels, using the method
called CDAN proposed by Long et al. (2018). This method replaces the original input to the adver-
sary, z := g(x) ∈ Z , by the outer product between z and the classifier output distribution, namely
g(x)⊗ h(g(x)) ∈ Rdk.

Putting everything together—minimax reformulation, Wasserstein-1 loss, zero-centered gradient
penalty, and conditional alignment—the empirical alignment loss computed on a mini-batch of
source examples (xi, yi)

n
i=1 and target examples (x′

j)
m
j=1 is

1

n

n∑
i=1

ℓ(h(g(xi)), yi) + λ

(
1

n

n∑
i=1

f(g(xi)⊗ h(g(xi)))−
1

m

m∑
j=1

f(g(x′
j)⊗ h(g(x′

i)))

)
− µ

ñ

ñ∑
i=1

∥(∇f)(z̃i)∥2,

where ñ := min(n,m) and z̃i is a random point on the line connecting g(xi) and g(x′
i). Here,

two hyperparameters are introduced: λ (lambda_da) controls the strength of alignment, and µ
(lambda_gp) controls the strength of enforcing the Lipschitz condition.
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IW Estimation Objective. Our proposed modifications for improving its stability in Section 3
include adding ℓ2-regularization to w (Azizzadenesheli et al., 2019), thereby the loss becomes

min
w

k∑
ŷ=1

(
pT (ŷ)−

k∑
y=1

pS(ŷ, y)wy

)2

+ ξ

k∑
y=1

(wy − w(0)
y )2,

where w(0) is an initial IW estimate. One hyperparameter is introduced, ξ (lambda_iw), which
controls the strength of the regularization. When ℓ2-regularization is implemented with weight
decay, the effective value of ξ is multiplied by 2 times the learning rate of w (lr_iw).

In our case, because IWDA is preceded by zero-shot fine-tuning whose decent performance means
that the features are partially aligned, we initialize w(0) with the solution w′ to the unregularized IW
loss on statistics obtained from the zero-shot model, computed using quadratic programming (Tachet
des Combes et al., 2020). Since the initial estimate may be unreliable, we set w(0) = (1−ρ)w′+ρ1
with hyperparameter ρ (lambda_iw_init).

Lastly, to minimize potential effects due to the miscalibration of neural models (Guo et al., 2017;
Alexandari et al., 2020), hard confusion matrix and hard target output distribution are used in the
estimation of IWs (Lipton et al., 2018; Garg et al., 2020).

C.2 HYPERPARAMETER SETTINGS

We include the hyperparameter settings used in our experiments on mBERT, and the only difference
in the settings on XLM-R is that the model learning rate is halved. The AdamW optimizer is used
in all our experiments, and a weight decay of 0.01 is always applied. For a discussion on the
methodology for hyperparameter tuning for unsupervised cross-lingual learning, see (Artetxe et al.,
2020c).

Zero-Shot Fine-Tuning. Learning rate is 1e-5 with 10% warmup and a linear schedule. Batch
size is 8.

IWDA. Model learning rate is 1e-5 with 10% warmup and a linear schedule. Adversary learning
rate is 5e-4 with a weight decay of 0.01, lambda_gp is 10, and lambda_da is 5e-3 with 10%
warmup. lr_iw is 5e-4, lambda_iw (weight decay) is 2, and lambda_iw_init is 0.25. Batch
size is 8 per domain (totals to 16 per step).

Knowledge Distillation (KD). Our implementation follows Hinton et al. (2015). Given a teacher
LM fine-tuned either zero-shot or using IWDA, we distill its knowledge on a pre-trained student LM
by minimizing the mean squared error (MSE) between student softmax outputs and teacher outputs,
on source and target data without labels. If source labeled data is available, we also train the student
to minimize source task loss.

We set the softmax temperature to 3, and the weight of the source task loss to 0.1. Learning rate is
chosen from {5e-5, 1e-4, 2e-4}, and batch size is 32. As in (Wu et al., 2020), we freeze the bottom
three layers of the student model during distillation.

Self-Training (ST). Our implementation follows Dong & de Melo (2019). Given an LM fine-
tuned on source only, ST continues fine-tuning the model by iteratively assigning pseudo-labels
to target unlabeled data and training on the ones with the highest confidence. Source loss is also
minimized during self-training.

The hyperparameters of ST involve the number of pseudo-labeled examples to select and train on
in each iteration. We set this to {0.05%, 2%} of the total number of unlabeled target examples.
Learning rate is 1e-5, and batch size is 128.

Number of Training Steps. On sequence classification tasks, the number of training steps is
equal to 4 epochs on source data. However, on token classification tasks (including NER), we
do not set the number of steps according to the number of sequences in the dataset. This is be-
cause we noticed that the average length of the sequences differs between languages, which means

21



Published as a conference paper at ICLR 2022

that the total amount of gradient updates received by each token may vary due to the averaging
in the loss function: it is smaller on domains with longer sequence lengths. Therefore, we scale
the number of steps on target language data using English data as the reference, so that the total
amount of gradient updates received by each token is the same on average. The scaling is given by
(average num. of tokens per sequence in target)/(average num. of tokens per sequence in English).

For example, on CoNLL, the scaling is 1.17 for German, 2.18 for Spanish, and 0.88 for Dutch, and
fine-tuning for the equivalent of 4 epochs over the English portion with the batch size of 8 (7021
steps) means 7135 steps on German, 9086 on Spanish, and 6954 on Dutch.
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